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Abstract

The sensor placement problem in contamination warning system design for water distri-

bution networks involves maximizing the protection level afforded by limited numbers of

sensors, typically quantified as the expected impact of a contamination event; the issue of

how to mitigate against high-impact events is either handled implicitly or ignored entirely.

Consequently, such sensor placements run the risk of failing to protect against high-impact,

9/11-style attacks. In contrast, robust sensor placements address this concern by focusing

strictly on high-impact events, and placing sensors to minimize the impact of these events.

We introduce several robust formulations of the sensor placement problem, distinguished

by how they quantify the potential damage due to high-impact events. Via solution of these

formulations, we explore the nature of robust versus expectation-based sensor placements

on three real-world, large-scale networks. We find that robust sensor placements can yield

large reductions in the number and magnitude of high-impact events, for modest increases

in expected impact. The resulting ability to trade-off between robust and expected-case

impacts is a key, unexplored dimension in contamination warning system design.
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1 Introduction

Contamination warning systems (CWSs) have been proposed as a promising approach for de-

tecting contamination events in drinking water distribution systems. The goal of a CWS is to

detect contamination events early enough to allow for effective public health and/or water utility

intervention to limit potential public health or economic impacts. There are many challenges

to detecting contaminants in drinking water systems: municipal distribution systems are large,

consisting of hundreds or thousands of miles of pipe; flow patterns are driven by time-varying

demands placed on the system by customers; and distribution systems are looped, resulting in

mixing and dilution of contaminants. The drinking water community has proposed that CWSs

be designed to maximize the number of contaminants that can be detected in drinking water dis-

tribution systems by combining online sensors with public health surveillance systems, physical

security monitoring, customer complaint surveillance, and routine sampling programs (USEPA,

2005).

Algorithms for placing sensors to support the design of CWSs for municipal water distri-

bution networks have received significant attention from researchers and practitioners over the

last ten years (Kessler et al., 1998; Ostfeld and Salomons, 2004; Berry et al., 2005a, 2006b).

Without exception, these algorithms attempt to either minimize the expected impact of a con-

tamination event (e.g., in terms of the number of people sickened or the volume of contami-

nated water consumed) or maximize the proportion of contamination events that are ultimately

detected, independent of impact. Recently, Berry et al. (2006b) showed that both objectives can

be formulated in terms of a single optimization model, illustrating that the proportion of events

detected can be viewed as an expected impact, and vice versa. In this unified optimization

model, contamination event probabilities are either assumed to be uniform, or are estimated

based on factors such as the difficulty of accessing a particular component of a distribution

network. Given a broad range of possible contamination events, sensor placement algorithms

then attempt to minimize the probability-weighted sum of contamination event impact, i.e., the

expected impact. The most advanced algorithms currently available can successfully generate

provably optimal sensor placements to very large (e.g., 10,000+ junction) distribution networks

for very large numbers (e.g., 50,000+) of possible contamination events, in modest run-times on
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a modern computing workstation (Berry et al., 2006b). Consequently, the basic sensor place-

ment problem for CWS design is largely solved for most practical distribution networks, and

the research emphasis has moved toward the integration of more realistic modeling assumptions

such as sensor failures (Berry et al., 2006a), site specific installation costs and accessibility con-

siderations (Berry et al., 2005b), significantly larger numbers of possible contamination scenar-

ios (Berry et al., 2007), and solution robustness in the face of data uncertainties (Carr et al.,

2006).

One currently unexplored, but – we argue – critical aspect of the sensor placement problem

involves optimization models in which the design objective is not minimization of the expected

impact, but rather minimization of the worst-case impact or other “robust” measures that focus

strictly on high-consequence contamination events. The lack of research into these alternative

models is perhaps counterintuitive in a post-9/11 environment. One explanation is that most

environmental problems have required a focus on mitigating all risks to human health, and not

just associated with those extremely high-impact events. Yet, robust sensor placement optimiza-

tion is of interest in practice. In our working experience with various US water municipalities,

a common reaction when discussing expectation-based optimization models is “Why not only

concentrate on high-impact contamination events?” Additional motivation for pursuing robust

sensor placement models stems from the observation that even optimal expectation-based sensor

placements can permit numerous high-impact contamination events (e.g., as discussed below in

Section 2). Further, accurate estimation of event probabilities is notoriously difficult, allowing

for unintended de-emphasis of high-impact events. Although the final determination of the de-

sign objective ultimately rests with policy-makers at various levels in disparate organizations,

the aforementioned factors strongly suggest that, at a minimum, there is a need to understand

the differences between expectation-based and robust sensor placements.

For example, one might conjecture that minimization of the worst-case impact to “accept-

able” levels may require fewer overall sensors than minimization of the expected-case impact.

However, our analyses support the opposite conclusion. Consider the illustrative scenario in

which there exist n contamination events yielding impacts greater than some acceptable thresh-

old T . Further assume that the n events target disparate regions of the network, such that a

sensor will mitigate against only one of the n events. In such a situation, n sensors are required
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to achieve a worst-case impact below T . In contrast, only a small number of sensors s < n

may be necessary to yield significant reductions in mean impact, as those sensors are free to

be placed at locations in the network capable of detecting contmainant from a broad range of

events.

In this paper, we introduce a number of robust measures of sensor placement performance,

drawing heavily from existing literature on robust optimization from the financial community.

Using a variety of optimization algorithms, we construct sensor placements that minimize these

robust impact measures on three real-world water distribution networks. We find that sensor

placements that minimize the expected impact admit – without exception – a non-trivial number

of very high-impact contamination events. These high-impact events can be mitigated with

robust sensor placements, e.g., we observe that significant reductions in the worst-case impact

are possible. These reductions come at the necessary expense of an increase in the mean impact

of a contamination event. However, the degree to which trade-offs are possible is significantly

larger than anticipated; performance discrepancies are so large that it is likely to influence the

higher-level CWS design process. However, we show that the different robust measures are in

fact largely uncorrelated, such that minimization of one measure can yield highly sub-optimal

performance in terms of the other measures. Consequently, it is imperative for decision-makers

to understand the nature of the various robust measures in detail.

The remainder of this paper is organized as follows. We begin in Section 2 with a motivating

example to illustrate differences in the characteristics of sensor placements that are optimal with

respect to expectation-based and worst-case performance. Various robust impact measures are

then introduced in Section 3. Section 4 details the test networks, contamination event scenarios,

optimization models, and algorithms that we use in the analysis discussed in Section 5; the latter

details quantitative and qualitative differences between expectation-based and robust sensor

placements. We defer discussion of the specific computational characteristics of the algorithms

used in our analysis to Section 6, which additionally addresses the computational difficulty of

robust sensor placement formulations. Finally, we conclude in Section 7 with a discussion of

the implications of our results.
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Figure 1: Histograms of the number of individuals sickened for various contamination events
in Network2 under expected-case (left figure) and worst-case (right figure) sensor placements.

2 Motivating Example

To concretely illustrate the relative trade-offs that are possible between expectation-based and

robust sensor placements, we begin with an example from a real-world water distribution net-

work. The network is simply denoted Network2; this and other test networks are described in

Section 4. Using the experimental methodology and algorithms presented below, we determine

distinct sensor placements for Network2 – given a budget of 20 sensors – that respectively min-

imize the expected-case and worst-case impact of a contamination event. The precise details of

the contamination scenarios are documented in Section 4; impact is quantified as the number of

people sickened by a contamination event (Murray et al., 2006).

Histograms of the impacts of various contamination events (in this case, contaminant injec-

tions at each network node, for a total of approximately 1,600 events) given the expected-case

and worst-case sensor placements are shown in Figure 1. We first consider the distribution of

impacts under the expected-case sensor placement, as shown in the left side of Figure 1. The

mean and worst-case impacts given this sensor placement are 685 and 4,902 individuals, respec-

tively. The distribution exhibits a feature of sensor placements that minimize the expected-case:

the presence of non-trivial numbers of contamination events that yield impacts over seven times

greater than that of the mean. Specifically, eight contamination events yield impacts greater

than 4,000 individuals sickened, while an additional six contamination events yields impacts
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between 3,500 and 4,000 individuals sickened.

Next, we consider the distribution of impacts given a sensor placement that minimizes the

worst-case impact of a contamination event, as shown in the right side of Figure 1. In con-

trasting the two distributions, we immediately observe a significant reduction in the number of

very high-impact contamination events. In particular, the highest-impact event sickens 3,490

individuals, in contrast to 4,902 individuals under the expected-case sensor placement; the 14

highest-impact events in the expected-case placement are mitigated by a sensor placement that

minimizes the worst case. However, as is expected, the mitigation of high-impact events in-

creases the frequency of small-to-moderate impact events. The worst-case sensor placement

yields a mean impact of 882 individuals sickened, representing a 29% increase relative to the

expected-case sensor placement. Even more dramatic growth is observed in the upper bound of

the third impact quartile, from 1,011 under the expected-case sensor placement to 1,445 under

the worst-case sensor placement (representing a 43% increase). The question for decision-

makers in CWS design is then: Is a large (in this case 29%) reduction in the worst-case impact

worth a correspondingly large increase in the expected impact?

A combination of adversarial and engineering factors ultimately dictate the answer to this

question. Although very high-impact contamination events typically represent a small fraction

of the total number of possible contamination events, they are not a priori any more difficult

to initiate. Backflow injections can be carried out with roughly equiprobable success at most

nodes in a typical distribution network. Further, contamination event probabilities are noto-

riously difficult to accurately quantify, due to a variety of estimates that must be made with

respect to adversarial intent and capability, and the level of target vulnerability. Reliance on

estimated event probabilities is therefore not without potentially significant risk; de-emphasis

of high-impact contaminations with perceived low probability of occurrence may cause sensors

to be placed in regions of the network that may allow many worst- or near-worst-case events to

proceed unmitigated. Finally, adversarial characteristics have a significant impact on the design

and assessment of a sensor placement. Intelligent and informed adversaries are likely to identify

and initiate those contamination events that yield the highest-consequence impacts. Although

some measures can be taken to mitigate intelligent adversaries (e.g., security classification of

water system infrastructure and operations so that impacts cannot be easily predicted), they
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do not guarantee protection; insiders will always remain a threat, and trained engineers may

be able to infer such characteristics from external observation or on-line resources with suffi-

cient accuracy. Consequently, a rational and practical alternative to estimating contamination

event probabilities is to simply assume an omniscient adversary and focus on protecting against

worst-case events. This is a commonly adopted analysis approach when faced with adversar-

ial conditions, and is routinely practiced in Operations Research and related decision support

literature.

3 Quantifying Solution Robustness

Figure 2: Graphical illustration contrasting the various “robust” metrics of sensor placement
performance.

Informally, “robust” optimization methods focus on generating solutions that minimize

down-side risk, i.e., the probability of occurrence of high-consequence events. The majority

of early research on robust optimization originated in the academic financial community. Es-

pecially in this context, quantification of solution robustness is a key component of a robust

optimization method. Two primary measures of solution robustness can be found in the body

of financial literature: Value-at-Risk (VaR) and Tail-Conditional Expectation (TCE). Given a
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set of potential scenarios and their associated costs (e.g., impact to the population in the context

of sensor placement), VaR is defined as the cost of the (1 − α)% most costly scenario (Holton,

2003), where 0 ≤ α ≤ 1. Typically, α is taken to be 0.05, such that the minimization of VaR

effectively allows an optimization algorithm to ignore any costs associated with the 100 · α %

highest-impact scenarios. VaR is an international standard for risk quantification in the bank-

ing community, and has seen widespread application in related contexts. In contrast to VaR,

TCE quantifies the expected cost of the α most costly scenarios (Artzner et al., 1999); again,

α is typically taken to be 0.05. Consequently, algorithms that minimize TCE must make de-

cisions in order to reduce the tail mass of the cost distribution. The conditional value-at-risk

measure, denoted CVaR, is closely related to the concept of TCE. In the case of continuous

cost distributions, CVaR = TCE. In the case of discrete cost distributions, CVaR is a continu-

ous approximation to the true cost distribution, such that TCE ≤ CVaR. Finally, we additionally

consider perhaps the most intuitive measure of down-side risk, that of the worst case cost, which

we denote simply as Worst. Overall, we observe that these four risk or robustness measures are

related through the following inequality: VaR ≤ TCE ≤ CVaR ≤ Worst. The various robust

metrics are illustrated graphically in Figure 2.

4 Test Networks and Problem Formulation

We now describe the test networks (Section 4.1), experimental methodology (Section 4.1), and

problem formulations (Section 4.2) used to support the motivating analysis presented previously

in Section 2 and the more comprehensive analysis presented subsequently in Section 5. The

specific algorithms used to solve the sensor placement formulations are described in Section 4.3.

4.1 Networks and Contamination Scenarios

We report computational results for three real, large-scale municipal water distribution net-

works. The networks are denoted simply as Network1, Network2, and Network3; the identities

of the corresponding municipalities are withheld due to security concerns. Network1 consists

of roughly 400 junctions, 500 pipes, and a small number of tanks and reservoirs. Network2

consists of roughly 3,000 junctions, 4,000 pipes, and approximately 50 tanks and reservoirs.
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Network3 consists of roughly 12,000 junctions, 14,000 pipes, and a handful of reservoirs; there

are no tanks or well sources in this municipality. All of the models are skeletonized, although

the degree of skeletonization in Network1 and Network2 is much greater than in Network3.

Graphical depictions of Network1, Network2, and Network3 are respectively shown in

the upper left, upper right, and lower portion of Figure 3. Each graphic was produced by

semi-manually “morphing” or altering (e.g., through pipe lengthening or coordinate transla-

tion/rotation) key topological features of the original network structure to further inhibit iden-

tification of the source municipalities. Local topologies were largely preserved in this process,

such that the graphics faithfully capture the coarse-grained characteristics of the underlying net-

work structures. Sanitized versions of all three networks, in the form of EPANET input files, are

freely available from the authors. While these files contain no coordinate information, all data

other than that relating to labels (which have been anonymized) are unaltered. Consequently, all

computed hydraulic and water quality information accurately reflect (within the fidelity limits

of the data and the computational model) the dynamics of the source municipalities. Our goals

in making these models available to the broader research community are to facilitate indepen-

dent replication of our results and to introduce larger, more realistic networks into the currently

limited suite of available test problems.

Network hydraulics are simulated over a 96 hour duration, representing four iterations of a

typical daily demand cycle. For each junction with non-zero demand, a single contamination

event is defined. Each contamination event starts at time t = 0 and continues for a duration

of 12 hours. Events are modeled as biological mass injections with a constant rate of 5.78e +

10 organisms per minute. We assume uniform contamination event probabilities, such that

all results are normalized by the number of non-zero demand junctions to obtain an expected

contamination event impact. Water quality simulations are performed for each event, with a

time-step resolution of 5 minutes. The resulting τej (as defined in Section 4.2) are then used to

compute the impact coefficients dej for the various design objectives. All hydraulic and water

quality simulations are performed using EPANET (Rossman, 2000).
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Figure 3: Graphical depictions of Network1 (upper left), Network2 (upper right), and Network3
(lower) municipality distribution topologies.

4.2 Optimization Model

To determine an optimal sensor placement x and the corresponding minimal performance metric

f(x), we formulate both the expected-case and robust sensor placement problems as Mixed-

Integer (Linear) Programs (MIPs), which we then solve using both problem-specific heuristics

and a commercially available MIP solver. The MIP-related terms used throughout this paper

are defined in the Mathematical Programming Glossary (Greenberg, 2006). As we previously

showed in (Berry et al., 2006b), the expected-case sensor placement optimization problem is

equivalent to the well-known p-median facility location problem. The MIP formulation of the

p-median problem is given as follows, where E represents the set of contamination events, L

represents the set of network junctions at which a sensor can be placed, p represents the available

number of sensors, and q represents a (free) “dummy” sensor that can detect all events given a
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sufficiently long time horizon (e.g, due to diagnoses at medical facilities):

Minimize
∑
e∈E

∑
j∈L∪{q}

dejxej (1)

Subject to
∑

j∈L∪{q}

xej = 1 ,∀e ∈ E (2)

xej ≤ yj ,∀j ∈ L, e ∈ E (3)∑
j∈L

yj = p (4)

yj ∈ {0, 1} ,∀j ∈ L (5)

0 ≤ xej ≤ 1 ,∀e ∈ E , j ∈ L ∪ {q} (6)

The binary yj variables determine whether a sensor is placed at a junction j ∈ L. Linearization

of the optimization objective is achieved through the introduction of auxiliary variables xej ,

which indicate whether a sensor placed at junction j is the first to detect contamination event

e. Constraint 3 ensures that detection is possible only if a sensor exists at a junction. The xej

variables are implicitly binary due to a combination of binary yj , Constraint 3, and the objective

function pressure induced by Equation 1. Constraint 4 ensures that exactly p sensors are placed

in the network. Constraint 2 guarantees that each contamination event e ∈ E is first detected by

exactly one sensor, either at q or in the set L; ties are broken arbitrarily. Finally, the objective

function (Equation 1) ensures that detection of an event e is assigned to the junction j ∈ L∪{q}

such that dej is minimal.

The impact of a potential contamination event is determined via transport simulation. EPANET

(Rossman, 2000) is used to generate a time-series τej of contaminant concentration at each

junction j ∈ L for each event e ∈ E . The resulting time-series are then used to compute the

network-wide impact dej of the event e assuming first detection via a sensor placed at junction

j. More formally, let γej denote the earliest time t at which a sensor at junction j can detect

contamination due to event e, e.g., when contaminant concentration reaches a specific detec-

tion threshold. If contaminant from event e fails to reach junction j, then γej = t∗, where

t∗ denotes either the end of the simulation; otherwise, γej can easily be computed from τej .
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Further, let de(t) denote the network-wide damage incurred by an event e up to time t. Next,

we define dej = de(γej), i.e., the aggregate, network-wide damage incurred if event e is first

detected at time γej . In our analysis, dsq = ds(t∗). We assume without loss of generality that a

sensor placed at a junction j ∈ L is capable of immediately detecting any contamination from

event e ∈ E – assuming the contaminant can reach junction j – once non-zero concentration

levels of a contaminant are present. In the absence of realistic alarm procedures and mitiga-

tion strategies, we assume that both consumption and propagation of contaminant is terminated

once detection occurs; extensions to deal with delayed notification are described in (Berry et al.,

2006b). Finally, we observe that the p-median optimization formulation – through the use of

dej coefficients – allows for the use of arbitrarily complex contamination scenarios, e.g., mul-

tiple simultaneous injection sites with different contaminants at variable injection strengths and

durations.

We have also investigated extensions of the basic MIP formulation to robust metrics. While

expression of a MIP formulation to minimize Worst is a straightforward extension of the expectation-

based formulation, the CVaR (the continuous approximation to TCE, which in general is dis-

cretized) formulation is significantly more complicated. For reasons discussed in below in

Section 4.3, we do not discuss these formulations herein, and instead refer to Greenberg et al.

(2007).

We quantify the impact due to a contamination event as the number of individuals sickened

by exposure prior to detection by either a sensor or a sufficient time delay (i.e., detection by the

dummy sensor q). The specific computation is defined via the demand-based model (in which

contaminant ingestion is proportional to volume of water extracted from a distribution system)

described in Murray et al. (2006), and the values for the numerous parameters in the dosage-

response computation can be obtained from the authors. The Murray et al. (2006) model yields

potentially fractional population counts, but to simplify the presentation we round all reported

values to the nearest integral value. Alternative models of population exposure have assumed

the availability of population estimates on a per-junction basis (Berry et al., 2005a; Watson et al.,

2004). While correcting the obvious deficiency of demand-based models, reliable estimates of

population density are generally unavailable.
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4.3 Algorithms

We have previously described both heuristic and exact algorithms for solving expectation-based

MIP formulations of the sensor placement problem (Berry et al., 2006b). We employed com-

mercially available, state-of-the-art MIP solvers, specifically ILOG’s CPLEX 10.0 solver1, to

compute provably optimal solutions. Using various modeling techniques to reduce the size of

the basic formulation, we were able to identify optimal solutions to Network3 (our largest test

network) in roughly 15 minutes of CPU time on a modern computing workstation. These tech-

niques take advantage of equality in the arrival time of contaminant at various junctions, due

to the imposition of a discretized water quality time-step. Consequently, the impacts dej are

identical for various junctions j, which can be collected into “superlocations”, thereby reducing

the effective size of the formulation (Berry et al., 2007).

We also applied a Greedy Randomized Adaptive Search Procedure (GRASP) to heuristi-

cally generate high-quality solutions to the expectation-based MIP formulation. The algorithm,

fully described in Resende and Werneck (2004), is a simple multi-start local search procedure

in which steepest-descent hill-climbing is applied to a number N of initial solutions. The lo-

cal search neighborhood used in the GRASP algorithm is based on facility exchange: each

move consists of closing a currently opened facility and opening a currently closed facility. The

steepest-descent procedure selects the exchange that results in the largest increase in perfor-

mance at each iteration, and terminates once no improvements are possible. The best of the

N solutions is returned by the algorithm. Our experiments indicate that the GRASP heuristic

obtains solutions significantly faster than the MIP solves described above, e.g., in under three

minutes for Network3. Further, in all cases investigated to date, the obtained solutions were

optimal, i.e., equivalent in quality to those obtained by CPLEX.

We extended the GRASP heuristic to enable solution of the robust variants of the MIP

formulation described in Section 4.2. The extensions involved modification of the move evalu-

ation code that determines the change in performance associated with simultaneously removing

a sensor from junction x and placing it instead at an open junction y. The efficiency of the

resulting heuristic is dictated by the speed of move evaluation, which can be accelerated by
1http://www.ilog.com
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various analytic techniques specific to the p-center and related facility location problems; we

defer to Mladenovic et al. (2003) for a discussion of these techniques.

5 Expectation versus Robust Sensor Placements

We now examine the performance differences between expectation-based and robust sensor

placements on our test networks. Our analysis is broken into two components. We begin in

Section 5.1 by expanding the motivational analysis presented in Section 2 to additional ro-

bustness measures and test networks. In Section 5.2, we then discuss several key qualitative

differences between expectation-based and robust placements in terms of sensor locations in

Network2.

5.1 A Quantitative Analysis of Placement Characteristics

For each of our test networks, we use the heuristic algorithm described in Section 4.3 to develop

sensor placements that attempt to independently minimize Mean performance and the various

robust metrics. As discussed in Section 6, we cannot in general guarantee the optimality of

robust sensor placements due to the increased difficulty of the corresponding robust MIP for-

mulations relative to the baseline expectation-based MIP formulation. The performance of each

of the resulting sensor placements is then quantified in terms of the Mean, VaR, TCE, and Worst

metrics. The results for Network1 through Network3 are respectively shown in Tables 1 through

3. We observe that in each of the tables, the inequality VaR ≤ TCE ≤ Worst holds, as required,

for the diagonal entries.

We first consider the results for Network1 (see Table 1), in which 5 sensors are placed to

protect against 105 contamination events; contamination events are initiated at each of the 105

out of approximately 400 junctions with non-zero demand. Due to the small scale of this prob-

lem, we are able to establish the optimality of the Worst sensor placement by exactly solving the

MIP formulation; we were unable to establish optimality for the TCE sensor placement. Rela-

tive to the example shown in Section 2, we observe even more dramatic differences between the

Mean and Worst sensor placements: the worst-case impact can be cut in half for less than a 13%

increase in the mean impact. Via exhaustive enumeration of the solution space via a modified
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Performance Metric
Objective to Minimize Mean VaR TCE Worst
Mean 143 476 749 1249
VaR 175 388 824 1447
TCE 190 476 539 679
Worst 162 565 587 605

Table 1: Performance of expectation-based and robust sensor placements in terms of various
metrics for Network1, generated using the GRASP heuristic. The placements consist of 5 sen-
sors mitigating against 105 possible contamination events.

MIP branch-and-bound procedure, we determined that there are in fact a number of alternative

global optima that satisfy Worst = 605. This finding raises the possibility that solutions with

Worst = 605 and Mean ≤ 162 (13% above the minimal 143 value) may exist. Indeed, using a

modified version of our heuristic algorithm that allows for specification of side constraints, we

found such a solution with Worst = 605 and Mean = 148; the latter represents roughly a 3%

increase relative to the optimal value of Mean = 143. This observation further illustrates the

degree to which it is possible to trade off robust versus expectation-based performance; in par-

ticular, it seems likely that decision-makers would prefer this particular Worst placement over

the optimal Mean placement.

Although we could in principle perform a similar analysis for each of the results shown

in Tables 1 through 3, side constraints further increase the difficulty of the robust MIP formu-

lations, which as discussed in Section 6 is already substantial. Rather, we simply note that

optimality (or presumed optimality) with respect to one metric does not guarantee conditional

optimality (e.g., optimal on a secondary measure given a constraint on a primary measure) on

the complementary measures, due to the potential presence of alternative optima. Finally, we

observe that although the performance characteristics of the Mean and Worst placements are

significantly different, the placements themselves are not; the two Worst placements discussed

above locate sensors at respectively two and three of the junctions at which sensors are located

in the Mean placement.

Given that VaR, TCE, and Worst all quantify related aspects of the distribution of strictly

high-impact contamination events, we expected a priori that sensor placements minimizing

these robustness measures would be strongly correlated in terms of their performance, i.e., sen-

sor placements yielding minimal performance with respect to one robust metric will yield near-
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Performance Metric
Objective to Minimize Mean VaR TCE Worst
Mean 685 2244 2953 4902
VaR 740 2019 2699 5076
TCE 757 2112 2508 3962
Worst 869 2773 2990 3490

Table 2: Performance of expectation-based and robust sensor placements in terms of various
metrics for Network2, generated using the GRASP heuristic. The placements consist of 20
sensors mitigating against 1621 possible contamination events.

Performance Metric
Objective to Minimize Mean VaR TCE Worst
Mean 320 1214 1767 4780
VaR 335 1188 1781 5794
TCE 343 1283 1685 4219
Worst 463 1934 2315 3079

Table 3: Performance of expectation-based and robust sensor placements in terms of various
metrics for Network3, generated using the GRASP heuristic. The placements consist of 20
sensors mitigating against 9705 possible contamination events.

minimal performance in terms of all robust metrics. Unexpectedly, the data shown in Table 1

indicate this is not the case. For example, the Worst performance of the VaR-optimal placement

is more than double that of the optimal Worst performance. Even discounting potential effects

due to alternative global optima, the effect remains significant; minimizing Worst subject to

VaR ≤ 388 yields only a slight reduction in Worst, to 1249. Similar discrepancies exist between

the observed and optimal values of TCE given a VaR-optimal placement. Of course, minimiza-

tion of VaR allows for any distribution of the remaining α proportion of high-impact events, so

the results are consistent. However, the degree of the divergence was unexpected. In general,

this behavior simply reinforces the importance of understanding and analyzing the performance

metrics used in optimization; apparently subtle definitional differences (e.g., between TCE and

Worst) in metrics can yield significant differences in both sensor placements and performance.

Next, we consider the results for Network2 (see Table 2), which extends the analysis pre-

sented in Section 2 to other robust metrics; we are unable to establish optimality of any of

the robust sensor placements for Network2 and Network3. Expanding on the previously noted

observation that trade-offs in Mean and Worst performance are possible, we again observe al-

ternative optima in this problem for the Worst-optimal performance. Mirroring the approach

16



discussed above for Network1, we were able to generate a solution via imposition of side con-

straints with Worst = 3490 and Mean = 768, in contrast to the initial value of Mean = 869

given the Worst-optimal solution. Consequently, it is possible in Network2 to obtain a nearly

30% reduction in worst-case impact at the expense of a relatively minor 12% increase in mean

impact. Interestingly, despite similar performance, this solution and the Mean-optimal solution

share sensors at only two of the possible twenty junctions in common. Finally, as with the

results for Network1, the performance of the robust metrics is not strongly correlated – even

accounting for the presence of alternative global optima.

We conclude by noting that results analogous to those observed for Network1 and Net-

work2 extend to Network3, the results for which are shown in Table 3. Overall, our primary

conclusions – (1) that it is possible to trade off expectation-based and robust performance and

(2) the performance of various robust sensor placements is not strongly correlated – hold over a

range of distribution network scales, from very small municipalities to large-scale cities. Con-

sequently, the issues we raise in our analysis are broadly applicable to decision-makers in the

water security domain.

5.2 A Qualitative Assessment of Placement Characteristics

Quantitative analysis is only one avenue to understanding and exploring the relationships be-

tween expectation-based and robust sensor placements. In this section, we compare and contrast

the qualitative characteristics of expectation-based and worst-case sensor placements for Net-

work2, each containing 20 sensors. The locations of the corresponding sensor placements are

respectively shown in the left and right sides of Figure 4. In Network2, water is treated at a

single source and pumped in stages to successively higher elevations. To compare the two sen-

sor placements, we consider characteristics such as the size and number of pipes connected to

the sensor junctions, in addition to the demand at sensor junctions. Further, we consider the

number of contamination events that are detected by each sensor placement, the average impact

of these contamination events, and the time to detection.

In both placements, the sensors are located at junctions along relatively large diameter pipes,

which are additionally often connected to more than two pipes; about half of the sensors are

located at junctions with large demand. Specifically, all sensors are located on junctions con-
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Figure 4: The location of sensors corresponding to Mean (left figure) and Worst (right figure)
sensor placements for Network2. Junctions with sensors are denoted by “star”-shaped graphical
overlays.

nected to 8 inch or larger diameter pipes, which is the median diameter of pipes in Network2.

Moreover, the majority of sensor-equipped junctions are connected to 12 inch pipes or greater

(17-18 of the 20). One difference in the two placements, however, is that the Worst placement

locates half of the sensors on junctions connected to 20 inch or larger pipes, while only 25% of

the sensors in the Mean placement are connected to 20 inch pipes or larger.

In both placements, 17 of the 20 sensors are located on junctions connected to 3 or more

pipes; none are placed at dead-end junctions. Further, 8 of the 20 sensors in both placements

are located on junctions in the top quartile of demands. For the expectation-based placement,

5 sensors are located at zero-demand junctions, while for the Worst placement, 8 sensors are

located at zero-demand junctions.

It appears from examination of Figure 4 that sensors in the Worst placement are somewhat

closer together, possibly resulting in less spatial coverage of the distribution network. How-

ever, approximately the same number of contamination events are detected by physical sensors:

roughly 850 events out of a total of approximately 1,600. Each sensor is responsible for de-

tecting approximately 42 contamination events on average. The average time to detection for

each placement is similar; 7 hours for the Mean placement and 9 hours for the Worst place-

ment. However, the average impact of the contamination events at the time of detection by the

Mean placement is 685 individuals, in contrast to 882 individuals for the Worst placement. It

is also interesting to note that a sensor is located much closer to the water source in the Worst
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placement, but not in the Mean placement.

In summary, the two sensor placements are surprisingly quite similar in terms of the diam-

eter of connected pipes, the number of connected pipes, the demand at the sensor junctions,

and the number of contamination events detected. Notable differences are that the Worst solu-

tion places more sensors on larger-diameter pipes, does not demonstrate an even spatial spread

throughout the network, and has a sensor located much closer to the source. Other salient differ-

ences include the observation that the Worst placement allows for significantly higher impacts

on average (which is obviously necessary to achieve low Worst performance), but counterintu-

itively takes longer on average to detect contamination events. Overall, subtle differences in

sensor locations appear to be responsible for the large observed differences in terms of both

Mean and Worst performance.

6 Computational Experience

We now analyze the computational properties of the GRASP heuristic and the MIP models

described in Section 4.3, contrasting differences between expected-case and robust optimization

models. As hinted at previously, robust MIP formulations are empirically much more difficult

to solve than their expectation-based counterparts. To quantify this discrepancy, we consider the

average run-times required to generate a single local optimum using the GRASP heuristic for the

Mean, VaR, TCE, and Worst performance metrics. Our computational platform is a workstation

containing 64-bit AMD 2.2GHz Opteron CPUs running the Linux 2.6 operating system; the

platform possess 64GB of RAM, such that run-time issues relating to memory paging are non-

existent. All codes were written in C++ and compiled using the GNU gcc compiler. The results

for all three of our test networks are shown in Table 4, using the sensor budgets indicated in

Section 4.1. The run-times include the time required to load the problem instance.

The results clearly illustrate the difficulty of robust variants of the sensor placement prob-

lem. Although Network1 run-times are clearly negligible for any metric, the divergence be-

tween the Mean and other metrics is significant for Network2; the run-times under the Mean

and Worst metrics differ by a factor of 100, and are even larger under the VaR and TCE metrics.

Relative to Network1, the growth in difficulty is accentuated in part due to the growth in the
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Mean Run-Time per Local Optimum
Objective to Minimize Network1 Network2 Network3
Mean 0.01s 0.81s 6.5s
Worst 0.02s 97s 4.4hrs
VaR 0.05s 643s 20.4hrs
TCE 0.06s 810s 26.0hrs

Table 4: Mean run-times required for the GRASP heuristic to generate a local optimum to both
expectation-based and robust variants of the sensor placement problem, for each of our test
networks.

sensor budget p, as the number of exchanges available from any solution is a monotonically

increasing function of both |L| and p for the range of p we consider. Even larger, analogous

discrepancies are observed for Network3, where the run-times under the Mean and Worst met-

rics differ by a factor of nearly 2,500. The difficulty of computing samples for the VaR and TCE

metrics is much greater than that for Worst. This is due to the additional need for sorting the

impacts (in the case of VaR and TCE) and computing the tail expectation (in the case of TCE).

We now consider the relative difficulty of expectation-based and robust MIP formulations

for exact solvers. Specifically, we executed CPLEX 10.0 on each of our test networks, to

independently minimize Mean, CVaR, and Worst. The computational platform was identical

to that described above for the heuristic tests, and a limit of 24 (and in some cases greater, for

Network3) hours was imposed on each individual run. The results are reported in Table 5.

We first examine the results for Network1, observing that minimization of the robust met-

rics requires several orders of magnitude more run-time than required for the Mean metric.

However, minimization of CVaR is less costly than Worst. We currently have no explanation

for this discrepancy. Next, we examine the results for Network2 and Network3. In no case

could CPLEX minimize the robust metrics within the allocated time limit. In several cases,

a feasible solution could not be located, and in all cases the heuristic solutions yielded better

performance than the best solution found by CPLEX. Overall, these results clearly reinforce the

dramatic differences in difficulty involved in minimization of expectation-based versus robust

performance metrics; the latter require at least 20 times more computational effort, and in most

cases, significantly more.

Overall, the data presented in Tables 4 and 5 illustrate the challenges associated with op-

timization of robust performance metrics. Although MIP methods are tractable in the case of
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Run-Time
Objective to Minimize Network1 Network2 Network3
Mean 0.70s 3m2s 47m31s
Worst 8m20s >24hrs >48hrs
CVaR 3m18s >24hrs >96hrs

Table 5: Run-times to solve the exact MIP models for expectation-based and robust variants of
the sensor placement problem, for each of our test networks.

minimizing Mean impacts, optimal robust solutions - or at least proofs of optimality - are cur-

rently out of reach of exact methods. Even with heuristics, locating high-quality solutions to

robust formulations requires a significant computational investment. However, even lacking

optimal solutions, the fundamental conclusions presented in Section 5 still hold: it is possible

to trade off expected versus robust performance. Future improvements in heuristic and exact

technologies will further enhance our ability to exploit this property, and to better understand

the relationship between the various robust metrics. Finally, we observe that the relative diffi-

culty of robust optimization is not necessarily inherent. Our results are empirical, rather than

theoretical, and it is possible that additional research will expose techniques for significantly

improving algorithm performance, e.g., cuts in the case of MIPs or more effective move evalu-

ators in the case of heuristics. Algorithms for minimizing the expected case, i.e., for solving the

p-median formulation, have been extensively studied for decades, and only recently have these

algorithms yielded results as impressive as those we report.

7 Conclusions

Most extant algorithms for the sensor placement problem in water distribution networks con-

sider minimization of the expected impact of a contamination event. However, the solutions

generated by these algorithms admit a number of low-probability, very high-impact contamina-

tion events. The presence of these events, in addition to consideration of known inaccuracies

in and difficulties associated with contamination event probability estimation, should motivate

decision makers to assess the differences between solutions that minimize expected impact

and those that focus strictly on high-consequence contamination events. We introduce a num-

ber of so-called robust metrics for quantifying the impact of high-consequence contamination
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events. Using both heuristic and exact optimization algorithms, we then contrast the perfor-

mance characteristics of solutions that respectively attempt to minimize the mean and robust

metrics. We show that it is possible to gain significant reductions in the number and degree of

high-consequence events, at the expense of moderate increases in the mean impact of a contam-

ination event. The existence of this trade-off should be of significant interest to CWS designers,

given inherent issues involved with event probability estimation and the implicit desire to miti-

gate against 9/11-style attacks. Additionally, we find that performance with respect to different

robust metrics is not highly correlated, further emphasizing the need to develop a deeper under-

standing of the relationship between solutions developed using different optimization metrics.

Finally, we demonstrate that solution of robust formulations of the sensor placement problem

are significantly more difficult than for their expectation-based counterpart. Although heuris-

tics can identify high-quality solutions for robust formulations, exact methods are unable to

tackle all but the smallest test networks. Non-trivial research effort will ultimately be required

to develop truly efficient algorithms for solving, especially to optimality, robust formulations.
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